Органоиды живой клетки содержащие днк. Строение клетки. Строение растительной клетки

Приглашаем Вас ознакомиться с материалами и .

: целлюлозная оболочка, мембрана, цитоплазма с органоидами, ядро, вакуоли с клеточным соком.

Наличие пластид - главная особенность растительной клетки.


Функции клеточной оболочки - определяет форму клетки, защищает от факторов внешней среды.

Плазматическая мембрана - тонкая пленка, состоит из взаимодействующих молекул липидов и белков, отграничивает внутреннее содержимое от внешней среды, обеспечивает транспорт в клетку воды, минеральных и органических веществ путем осмоса и активного переноса, а также удаляет продукты жизнедеятельности.

Цитоплазма - внутренняя полужидкая среда клетки, в которой расположено ядро и органоиды, обеспечивает связи между ними, участвует в основных процессах жизнедеятельности.

Эндоплазматическая сеть - сеть ветвящихся каналов в цитоплазме. Она участвует в синтезе белков, липидов и углеводов, в транспорте веществ. Рибосомы - тельца, расположенные на ЭПС или в цитоплазме, состоят из РНК и белка, участвуют в синтезе белка. ЭПС и рибосомы - единый аппарат синтеза и транспорта белков.

Митохондрии - органоиды, отграниченные от цитоплазмы двумя мембранами. В них окисляются органические вещества и синтезируются молекулы АТФ с участием ферментов. Увеличение поверхности внутренней мембраны, на которой расположены ферменты за счет крист. АТФ - богатое энергией органическое вещество.

Пластиды (хлоропласты, лейкопласты, хромопласты), их содержание в клетке - главная особенность растительного организма. Хлоропласты - пластиды, содержащие зеленый пигмент хлорофилл, который поглощает энергию света и использует ее на синтез органических веществ из углекислого газа и воды. Отграничение хлоропластов от цитоплазмы двумя мембранами, многочисленные выросты - граны на внутренней мембране, в которых расположены молекулы хлорофилла и ферменты.

Комплекс Гольджи - система полостей, отграниченных от цитоплазмы мембраной. Накапливание в них белков, жиров и углеводов. Осуществление на мембранах синтеза жиров и углеводов.

Лизосомы - тельца, отграниченные от цитоплазмы одной мембраной. Содержащиеся в них ферменты ускоряют реакцию расщепления сложных молекул до простых: белков до аминокислот, сложных углеводов до простых, липидов до глицерина и жирных кислот, а также разрушают отмершие части клетки, целые клетки.

Вакуоли - полости в цитоплазме, заполненные клеточным соком, место накопления запасных питательных веществ, вредных веществ; они регулируют содержание воды в клетке.

Ядро - главная часть клетки, покрытая снаружи двух мембранной, пронизанной порами ядерной оболочкой. Вещества поступают в ядро и удаляются из него через поры. Хромосомы - носители наследственной информации о признаках организма, основные структуры ядра, каждая из которых состоит из одной молекулы ДНК в соединении с белками. Ядро - место синтеза ДНК, и-РНК, р-РНК.



Наличие наружной мембраны, цитоплазмы с органоидами, ядра с хромосомами.

Наружная, или плазматическая, мембрана - отграничивает содержимое клетки от окружающей среды (других клеток, межклеточного вещества), состоит из молекул липидов и белка, обеспечивает связь между клетками, транспорт веществ в клетку (пиноцитоз, фагоцитоз) и из клетки.

Цитоплазма - внутренняя полужидкая среда клетки, которая обеспечивает связь между расположенными в ней ядром и органоидами. В цитоплазме протекают основные процессы жизнедеятельности.

Органоиды клетки:

1) эндоплазматическая сеть (ЭПС) - система ветвящихся канальцев, участвует в синтезе белков, липидов и углеводов, в транспорте веществ в клетке;

2) рибосомы - тельца, содержащие рРНК, расположены на ЭПС и в цитоплазме, участвуют в синтезе белка. ЭПС и рибосомы - единый аппарат синтеза и транспорта белка;

3) митохондрии - «силовые станции» клетки, отграничены от цитоплазмы двумя мембранами. Внутренняя образует кристы (складки), увеличивающие ее поверхность. Ферменты на кристах ускоряют реакции окисления органических веществ и синтеза молекул АТФ, богатых энергией;

4) комплекс Гольджи - группа полостей, отграниченных мембраной от цитоплазмы, заполненных белками, жирами и углеводами, которые либо используются в процессах жизнедеятельности, либо удаляются из клетки. На мембранах комплекса осуществляется синтез жиров и углеводов;

5) лизосомы - тельца, заполненные ферментами, ускоряют реакции расщепления белков до аминокислот, липидов до глицерина и жирных -.кислот, полисахаридов до моносахаридов. В лизосомах разрушаются отмершие части клетки, целые и клетки.

Клеточные включения - скопления запасных питательных веществ: белков, жиров и углеводов.

Ядро - наиболее важная часть клетки. Оно покрыто двухмембранной оболочкой с порами, через которые одни вещества проникают в ядро, а Другие поступают в цитоплазму. Хромосомы - основные структуры ядра, носители наследственной информации о признаках организма. Она передается в процессе деления материнской клетки дочерним клеткам, а с половыми клетками - дочерним организмам. Ядро - место синтеза ДНК, иРНК, рРНК.

Задание:

Поясните, почему органоиды называют специализированными структурами клетки?

Ответ: органоиды называют специализированными структурами клетки, так как они выполняют строго определенные функции, в ядре хранится наследственная информация, в митохондриях синтезируется АТФ, в хлоропластах протекает фотосинтез и т.д.

Если у Вас есть вопросы по цитологии, то Вы можете обратиться за помощью к

Органоиды - постоянно присутствующие в цитоплазме, специализированные для выполнения определенных функций структуры. По принципу организации выделяют мембранные и немембранные органоиды клетки.

Мембранные органоиды клетки

1. Эндоплазматическая сеть (ЭПС) - система внутренних мембран цитоплазмы, образующих крупные полости - цистерны и многочисленные канальцы; занимает центральное положение в клетке, вокруг ядра. ЭПС составляет до 50% объема цитоплазмы. Каналы ЭПС связывают все органоиды цитоплазмы и открываются в перинуклеарное пространство ядерной оболочки. Таким образом, ЭПС представляет собой внутриклеточную циркуляционную систему. Различают два вида мембран эндоплазматической сети - гладкую и шероховатую (гранулярную). Однако необходимо понимать, что они являются частью одной непрерывной эндоплазматической сети. На гранулярных мембранах расположены рибосомы, здесь идет синтез белка. На гладких мембранах упорядоченно расположены ферментные системы, участвующие в синтезе жиров и углеводов.

2. Аппарат Гольджи представляет собой систему цистерн, канальцев и пузырьков, образованных гладкими мембранами. Эта структура расположена на периферии клетки по отношению к ЭПС. На мембранах аппарата Гольджи упорядоченно расположены ферментные системы, участвующие в образовании более сложных органических соединений из белков, жиров и углеводов, синтезированных в ЭПС. Здесь происходит сборка мембран, образование лизосом. Мембраны аппарата Гольджи обеспечивают накопление, концентрацию и упаковку секрета, выделяемого из клетки.

3. Лизосомы - мембранные органоиды, содержащие до 40 протеолитических ферментов, способных расщеплять органические молекулы. Лизосомы участвуют в процессах внутриклеточного пищеварения и апоптоза (запрограммированной гибели клетки).

4. Митохондрии - энергетические станции клетки. Двухмембранные органоиды, имеющие гладкую наружную и внутреннюю мембрану, образующую кристы - гребни. На внутренней поверхности внутренней мембраны упорядоченно расположены ферментные системы, участвующие в синтезе АТФ. В митохондриях находится кольцевая молекула ДНК, сходная по строению с хромосомой прокариот. Имеется много мелких рибосом, на которых идет частично независимый от ядра синтез белков. Однако генов, заключенных в кольцевидной молекуле ДНК, недостаточно для обеспечения всех аспектов жизнедеятельности митохондрий, и они являются полуавтономными структурами цитоплазмы. Увеличение их числа происходит за счет деления, чему предшествует удвоение кольцевой молекулы ДНК.

5. Пластиды, - органоиды, характерные для растительных клеток. Существуют лейкопласты - бесцветные пластиды, хромопласты, имеющие красно-оранжевую окраску, и хлоропласты. - зеленые пластиды. Все они обладают единым планом строения и образованы двумя мембранами: наружной (гладкой) и внутренней, образующей перегородки - тилакоиды стромы. На тилакоидах стромы расположены граны, состоящие из уплощенных мембранных пузырьков - тилакоидов граны, уложенных один на другой по типу монетных столбиков. Внутри тилакоидов граны находится хлорофилл. Световая фаза фотосинтеза проходит именно здесь - в гранах, а реакции темновой фазы - в строме. В пластидах имеется кольцевидная молекула ДНК, сходная по строению с хромосомой прокариот, и много мелких рибосом, на которых идет частично независимый от ядра синтез белков. Пластиды могут переходить из одного вида в другой (хлоропласты в хромопласты и лейкопласты), они являются полуавтономными органоидами клетки. Увеличение числа пластид идет за счет их деления надвое и почкования, которым предшествует редупликация кольцевой молекулы ДНК.

Немембранные органоиды клетки

1. Рибосомы - округлые образования из двух субъединиц, состоящие на 50% из РНК и 50% из белков. Субъединицы образуются в ядре, в ядрышке, а в цитоплазме в присутствии ионов Са 2+ объединяются в целостные структуры. В цитоплазме рибосомы расположены на мембранах эндоплазматической сети (гранулярная ЭПС) или свободно. В активном центре рибосом происходит процесс трансляции (подбор антикодонов тРНК к кодонам иРНК). Рибосомы, перемещаясь по молекуле иРНК с одного конца на другой, последовательно делают доступными кодоны иРНК для контакта с антикодонами тРНК.

2. Центриоли (клеточный центр) представляют собой цилиндрические тельца, стенкой которых являются 9 триад белковых микротрубочек. В клеточном центре центриоли расположены под прямым углом друг к другу. Они способны к самовоспроизведению по принципу самосборки. Самосборка - образование при помощи ферментов структур, подобных существующим. Центриоли принимают участие в образовании нитей веретена деления. Обеспечивают процесс расхождения хромосом во время деления клеток.

3. Жгутики и реснички - органоиды движения; они имеют единый план строения - наружная часть жгутика обращена в окружающую среду и покрыта участком цитоплазматической мембраны. Они представляют собой цилиндр: его стенкой являются 9 пар белковых микротрубочек, а в центре расположены две осевые микротрубочки. В основании жгутика, расположенного в эктоплазме - цитоплазме, лежащей непосредственно под клеточной мембраной, к каждой паре микротрубочек добавляется еще одна короткая микротрубочка. В результате образуется базальное тельце, состоящее из девяти триад микротрубочек.

4. Цитоскелет представлен системой белковых волокон и микротрубочек. Обеспечивает поддержание и изменение формы тела клетки, образование псевдоподий. Отвечает за амебоидное движение, образует внутренний каркас клетки, обеспечивает передвижение клеточных структур по цитоплазме.

На заре развития жизни на Земле все клеточные формы были представлены бактериями. Они всасывали органические вещества, растворённые в первичном океане, через поверхность тела.

Со временем некоторые бактерии приспособились производить органические вещества из неорганических. Для этого они использовали энергию солнечного света. Возникла первая экологическая система, в которой эти организмы были производителями. В результате этого в атмосфере Земли появился кислород, выделяемый этими организмами. С его помощью можно из той же самой пищи получить гораздо больше энергии, а добавочную энергию использовать на усложнение строения тела: разделение тела на части.

Одно из важных достижений жизни — разделение ядра и цитоплазмы. В ядре находится наследственная информация. Специальная мембрана вокруг ядра позволила защитить от случайных повреждений. По мере необходимости цитоплазма получает из ядра команды, направляющие жизнедеятельность и развитие клетки.

Организмы, у которых ядро отделено от цитоплазмы, образовали надцарство ядерных (к ним относятся — растения, грибы, животные).

Таким образом, клетка — основа организации растений и животных — возникла и развилась в ходе биологической эволюции.

Даже не вооружённым глазом, а ещё лучше под лупой можно видеть, что мякоть зрелого арбуза состоит из очень мелких крупинок, или зёрнышек. Это клетки — мельчайшие «кирпичики», из которых состоят тела всех живых организмов, в том числе и растительных.

Жизнь растения осуществляется соединённой деятельностью его клеток, создающих единое целое. При многоклеточности частей растения существует физиологическое разграничение их функций, специализация различных клеток в зависимости от местоположения их в теле растения.

Растительная клетка отличается от животной тем, что имеет плотную оболочку, покрывающую внутреннее содержимое со всех сторон. Клетка не является плоской (как её принято изображать), она скорей всего похожа на очень маленький пузырёк, наполненный слизистым содержимым.

Строение и функции растительной клетки

Рассмотрим клетку как структурно-функциональную единицу организма. Снаружи клетка покрыта плотной клеточной стенкой, в которой имеются более тонкие участки — поры. Под ней находится очень тонкая плёнка — мембрана, покрывающая содержимое клетки — цитоплазму. В цитоплазме есть полости — вакуоли, заполненные клеточным соком. В центре клетки или около клеточной стенки расположено плотное тельце — ядро с ядрышком. От цитоплазмы ядро отделено ядерной оболочкой. По всей цитоплазме распределены мелкие тельца — пластиды.

Строение растительной клетки

Строение и функции органоидов растительной клетки

Органоид Рисунок Описание Функция Особенности

Клеточная стенка или плазматическая мембрана

Бесцветная, прозрачная и очень прочная

Пропускает в клетку и выпускает из клетки вещества.

Клеточная мембрана полупроницаемая

Цитоплазма

Густое тягучее вещество

В ней располагаются все другие части клетки

Находится в постоянном движении

Ядро (важная часть клетки)

Округлое или овальное

Обеспечивает передачу наследственных свойств дочерним клеткам при делении

Центральная часть клетки

Сферической или неправильной формы

Принимает участие в синтезе белка

Резервуар, отделённый от цитоплазмы мембраной. Содержит клеточный сок

Накапливаются запасные питательные вещества и продукты жизнедеятельности ненужные клетке.

По мере роста клетки мелкие вакуоли сливаются в одну большую (центральную) вакуоль

Пластиды

Хлоропласты

Используют световую энергию солнца и создают органические из неорганических

Форма дисков, отграниченных от цитоплазмы двойной мембраной

Хромопласты

Образуются в результате накопления каротиноидов

Жёлтые, оранжевые или бурые

Лейкопласты

Бесцветные пластиды

Ядерная оболочка

Состоит из двух мембран (наружная и внутренняя) с порами

Отграничивает ядро от цитоплазмы

Даёт возможность осуществляться обмену между ядром и цитоплазмой

Живая часть клетки — это ограниченная мембраной, упорядоченная, структурированная система биополимеров и внутренних мембранных структур, участвующих в совокупности метаболических и энергетических процессов, осуществляющих поддержание и воспроизведение всей системы в целом.

Важной особенностью является то, что в клетке нет открытых мембран со свободными концами. Клеточные мембраны всегда ограничивают полости или участки, закрывая их со всех сторон.

Современная обобщенная схема растительной клетки

Плазмалемма (наружная клеточная мембрана) — ультрамикроскопическая плёнка толщиной 7,5 нм., состоящая из белков, фосфолипидов и воды. Это очень эластичная плёнка, хорошо смачивающаяся водой и быстро восстанавливающая целостность после повреждения. Имеет универсальное строение, т.е.типичное для всех биологических мембран. У растительных клеток снаружи от клеточной мембраны находится прочная, создающая внешнюю опору и поддерживающая форму клетки клеточная стенка. Она состоит из клетчатки (целлюлозы) — нерастворимого в воде полисахарида.

Плазмодесмы растительной клетки, представляют собой субмикроскопические канальцы, пронизывающие оболочки и выстланные плазматической мембраной, которая таким образом переходит из одной клетки в другую, не прерываясь. С их помощью происходит межклеточная циркуляция растворов, содержащих органические питательные вещества. По ним же идёт передача биопотенциалов и другой информации.

Порами называют отверстия во вторичной оболочке, где клетки разделяют лишь первичная оболочка и срединная пластинка. Участки первичной оболочки и срединную пластинку, разделяющие соседствующие поры смежных клеток, называют поровой мембраной или замыкающей пленкой поры. Замыкающую пленку поры пронизывают плазмодесменные канальцы, но сквозного отверстия в порах обычно не образуется. Поры облегчают транспорт воды и растворенных веществ от клетки к клетке. В стенках соседних клеток, как правило, одна против другой, образуются поры.

Клеточная оболочка имеет хорошо выраженную, относительно толстую оболочку полисахаридной природы. Оболочка растительной клетки продукт деятельности цитоплазмы. В её образовании активное участие принимает аппарат Гольджи и эндоплазматическая сеть.

Строение клеточной мембраны

Основу цитоплазмы составляет ее матрикс, или гиалоплазма, — сложная бесцветная, оптически прозрачная коллоидная система, способная к обратимым переходам из золя в гель. Важнейшая роль гиалоплазмы заключается в объединении всех клеточных структур в единую систему и обеспечении взаимодействия между ними в процессах клеточного метаболизма.

Гиалоплазма (или матрикс цитоплазмы) составляет внутреннюю среду клетки. Состоит из воды и различных биополимеров (белков, нуклеиновых кислот, полисахаридов, липидов), из которых основную часть составляют белки различной химической и функциональной специфичности. В гиалоплазме содержатся также аминокислоты, моносахара, нуклеотиды и другие низкомолекулярные вещества.

Биополимеры образуют с водой коллоидную среду, которая в зависимости от условий может быть плотной (в форме геля) или более жидкой (в форме золя), как во всей цитоплазме, так и в отдельных ее участках. В гиалоплазме локализуются и взаимодействуют между собой и средой гиалоплазмы различные органеллы и включения. При этом расположение их чаще всего специфично для определенных типов клеток. Через билипидную мембрану гиалоплазма взаимодействует с внеклеточной средой. Следовательно, гиалоплазма является динамической средой и играет важную роль в функционировании отдельных органелл и жизнедеятельности клеток в целом.

Цитоплазматические образования – органеллы

Органеллы (органоиды) — структурные компоненты цитоплазмы. Они имеют определённую форму и размеры, являются обязательными цитоплазматическими структурами клетки. При их отсутствии или повреждении клетка обычно теряет способность к дальнейшему существованию. Многие из органоидов способны к делению и самовоспроизведению. Размеры их настолько малы, что их можно видеть только в электронный микроскоп.

Ядро

Ядро — самая заметная и обычно самая крупная органелла клетки. Оно впервые было подробно исследовано Робертом Броуном в 1831 году. Ядро обеспечивает важнейшие метаболические и генетические функции клетки. По форме оно достаточно изменчиво: может быть шаровидным, овальным, лопастным, линзовидным.

Ядро играет значительную роль в жизни клетки. Клетка, из которой удалили ядро, не выделяет более оболочку, перестаёт расти и синтезировать вещества. В ней усиливаются продукты распада и разрушения, вследствие этого она быстро погибает. Образование нового ядра из цитоплазмы не происходит. Новые ядра образуются только делением или дроблением старого.

Внутреннее содержимое ядра составляет кариолимфа (ядерный сок), заполняющая пространство между структурами ядра. В нём находится одно или несколько ядрышек, а также значительное количество молекул ДНК, соединённых со специфическими белками — гистонами.

Строение ядра

Ядрышко

Ядрышко — как и цитоплазма, содержит преимущественно РНК и специфические белки. Важнейшая его функция заключается в том, что в нём происходит формирование рибосом, которые осуществляют синтез белков в клетке.

Аппарат Гольджи

Аппарат Гольджи — органоид, имеющий универсальное распространение во всех разновидностях эукариотических клеток. Представляет собой многоярусную систему плоских мембранных мешочков, которые по периферии утолщаются и образуют пузырчатые отростки. Он чаще всего расположен вблизи ядра.

Аппарат Гольджи

В состав аппарата Гольджи обязательно входит система мелких пузырьков (везикул), которые отшнуровываются от утолщённых цистерн (диски) и располагаются по периферии этой структуры. Эти пузырьки играют роль внутриклеточной транспортной системы специфических секторных гранул, могут служить источником клеточных лизосом.

Функции аппарата Гольджи состоят также в накоплении, сепарации и выделении за пределы клетки с помощью пузырьков продуктов внутриклеточного синтеза, продуктов распада, токсических веществ. Продукты синтетической деятельности клетки, а также различные вещества, поступающие в клетку из окружающей среды по каналам эндоплазматической сети, транспортируются к аппарату Гольджи, накапливаются в этом органоиде, а затем в виде капелек или зёрен поступают в цитоплазму и либо используются самой клеткой, либо выводятся наружу. В растительных клетках Аппарат Гольджи содержит ферменты синтеза полисахаридов и сам полисахаридный материал, который используется для построения клеточной оболочки. Предполагают, что он участвует в образовании вакуолей. Аппарат Гольджи был назван так в честь итальянского учёного Камилло Гольджи, впервые обнаружившего его в 1897 году.

Лизосомы

Лизосомы представляют собой мелкие пузырьки, ограниченные мембраной основная функция которых — осуществление внутриклеточного пищеварения. Использование лизосомного аппарата происходит при прорастании семени растения (гидролиз запасных питательных веществ).

Строение лизосомы

Микротрубочки

Микротрубочки — мембранные, надмолекулярные структуры, состоящие из белковых глобул, расположенных спиральными или прямолинейными рядами. Микротрубочки выполняют преимущественно механическую (двигательную) функцию, обеспечивая подвижность и сокращаемость органоидов клетки. Располагаясь в цитоплазме, они придают клетке определённую форму и обеспечивают стабильность пространственного расположения органоидов. Микротрубочки способствуют перемещению органоидов в места, которые определяются физиологическими потребностями клетки. Значительное количество этих структур расположено в плазмалемме, вблизи клеточной оболочки, где они участвуют в формировании и ориентации целлюлозных микрофибрилл оболочек растительных клеток.

Строение микротрубочки

Вакуоль

Вакуоль — важнейшая составная часть растительных клеток. Она представляет собой своеобразную полость (резервуар) в массе цитоплазмы, заполненную водным раствором минеральных солей, аминокислот, органических кислот, пигментов, углеводов и отделённую от цитоплазмы вакуолярной мембраной — тонопластом.

Цитоплазма заполняет всю внутреннюю полость только у самых молодых растительных клеток. С ростом клетки существенно изменяется пространственное расположение вначале сплошной массы цитоплазмы: у неё появляются заполненные клеточным соком небольшие вакуоли, и вся масса становится ноздреватой. При дальнейшем росте клетки отдельные вакуоли сливаются, оттесняя к периферии прослойки цитоплазмы, в результате чего в сформированной клетке находится обычно одна большая вакуоль, а цитоплазма со всеми органеллами располагаются около оболочки.

Водорастворимые органические и минеральные соединения вакуолей обусловливают соответствующие осмотические свойства живых клеток. Этот раствор определённой концентрации является своеобразным осмотическим насосом для регулируемого проникновения в клетку и выделения из неё воды, ионов и молекул метаболитов.

В комплексе со слоем цитоплазмы и её мембранами, характеризующимися свойствами полупроницаемости, вакуоль образует эффективную осмотическую систему. Осмотически обусловленными являются такие показатели живых растительных клеток, как осмотический потенциал, сосущая сила и тургорное давление.

Строение вакуоли

Пластиды

Пластиды — самые крупные (после ядра) цитоплазматические органоиды, присущие только клеткам растительных организмов. Они не найдены только у грибов. Пластиды играют важную роль в обмене веществ. Они отделены от цитоплазмы двойной мембранной оболочкой, а некоторые их типы имеют хорошо развитую и упорядоченную систему внутренних мембран. Все пластиды едины по происхождению.

Хлоропласты — наиболее распространённые и наиболее функционально важные пластиды фотоавтотрофных организмов, которые осуществляют фотосинтетические процессы, приводящие в конечном итоге к образованию органических веществ и выделению свободного кислорода. Хлоропласты высших растений имеют сложное внутреннее строение.

Строение хлоропласта

Размеры хлоропластов у разных растений неодинаковы, но в среднем диаметр их составляет 4-6 мкм. Хлоропласты способны передвигаться под влиянием движения цитоплазмы. Кроме того, под воздействием освещения наблюдается активное передвижение хлоропластов амебовидного типа к источнику света.

Хлорофилл — основное вещество хлоропластов. Благодаря хлорофиллу зелёные растения способны использовать световую энергию.

Лейкопласты (бесцветные пластиды) представляют собой чётко обозначенные тельца цитоплазмы. Размеры их несколько меньше, чем размеры хлоропластов. Более и однообразна и их форма, приближающая к сферической.

Строение лейкопласта

Встречаются в клетках эпидермиса, клубнях, корневищах. При освещении очень быстро превращаются в хлоропласты с соответствующим изменением внутренней структуры. Лейкопласты содержат ферменты, с помощью которых из излишков глюкозы, образованной в процессе фотосинтеза, в них синтезируется крахмал, основная масса которого откладывается в запасающих тканях или органах (клубнях, корневищах, семенах) в виде крахмальных зёрен. У некоторых растений в лейкопластах откладываются жиры. Резервная функция лейкопластов изредка проявляется в образовании запасных белков в форме кристаллов или аморфных включений.

Хромопласты в большинстве случаев являются производными хлоропластов, изредка — лейкопластов.

Строение хромопласта

Созревание плодов шиповника, перца, помидоров сопровождается превращением хлоро- или лейкопластов клеток мякоти в каратиноидопласты. Последние содержат преимущественно жёлтые пластидные пигменты — каратиноиды, которые при созревании интенсивно синтезируются в них, образуя окрашенные липидные капли, твёрдые глобулы или кристаллы. Хлорофилл при этом разрушается.

Митохондрии

Митохондрии — органеллы, характерные для большинства клеток растений. Имеют изменчивую форму палочек, зёрнышек, нитей. Открыты в 1894 году Р. Альтманом с помощью светового микроскопа, а внутреннее строение было изучено позднее с помощью электронного.

Строение митохондрии

Митохондрии имеют двухмембранное строение. Внешняя мембрана гладкая, внутренняя образует различной формы выросты — трубочки в растительных клетках. Пространство внутри митохондрии заполнено полужидким содержимым (матриксом), куда входят ферменты, белки, липиды, соли кальция и магния, витамины, а также РНК, ДНК и рибосомы. Ферментативный комплекс митохондрий ускоряет работу сложного и взаимосвязанного механизма биохимических реакций, в результате которых образуется АТФ. В этих органеллах осуществляется обеспечение клеток энергией — преобразование энергии химических связей питательных веществ в макроэргиеские связи АТФ в процессе клеточного дыхания. Именно в митохондриях происходит ферментативное расщепление углеводов, жирных кислот, аминокислот с освобождением энергии и последующим превращением её в энергию АТФ. Накопленная энергия расходуется на ростовые процессы, на новые синтезы и т. д. Митохондрии размножаются делением и живут около 10 дней, после чего подвергаются разрушению.

Эндоплазматическая сеть

Эндоплазматическая сеть — сеть каналов, трубочек, пузырьков, цистерн, расположенных внутри цитоплазмы. Открыта в 1945 году английским учёным К. Портером, представляет собой систему мембран, имеющих ультрамикроскопическое строение.

Строение эндоплазматической сети

Вся сеть объединена в единое целое с наружной клеточной мембраной ядерной оболочки. Различают ЭПС гладкую и шероховатую, несущую на себе рибосомы. На мембранах гладкой ЭПС находятся ферментные системы, участвующие в жировом и углеводном обмене. Этот тип мембран преобладает в клетках семян, богатых запасными веществами (белками, углеводами, маслами), рибосомы прикрепляются к мембране гранулярной ЭПС, и во время синтеза белковой молекулы полипептидная цепочка с рибосомами погружается в канал ЭПС. Функции эндоплазматической сети очень разнообразны: транспорт веществ как внутри клетки, так и между соседними клетками; разделение клетки на отдельные секции, в которых одновременно проходят различные физиологические процессы и химические реакции.

Рибосомы

Рибосомы — немембранные клеточные органоиды. Каждая рибосома состоит из двух не одинаковых по размеру частичек и может делиться на два фрагмента, которые продолжают сохранять способность синтезировать белок после объединения в целую рибосому.

Строение рибосомы

Рибосомы синтезируются в ядре, затем покидают его, переходя в цитоплазму, где прикрепляются к наружной поверхности мембран эндоплазматической сети или располагаются свободно. В зависимости от типа синтезируемого белка рибосомы могут функционировать по одиночке или объединяться в комплексы — полирибосомы.

Клетка - это единая живая система, состоящая из двух неразрывно связанных частей - цитоплазмы и ядра (цв. табл. XII).

Цитоплазма - это внутренняя полужидкая среда, в которой расположено ядро и все органоиды клетки. Она имеет мелкозернистую структуру, пронизанную многочисленными тонкими нитями. В ней содержатся вода, растворенные соли и органические вещества. Основная функция цитоплазмы - объединять в одно целое и обеспечивать взаимодействие ядра и всех органоидов клетки.

Наружная мембрана окружает клетку тонкой пленкой, состоящей из двух слоев белка, между которыми расположен жировой слой. Она пронизана многочисленными мелкими порами, через которые осуществляется обмен ионами и молекулами между клеткой и средой. Толщина мембраны 7,5-10 нм, диаметр пор 0,8-1 нм. У растений поверх нее образуется оболочка из клетчатки. Основные функции наружной мембраны - ограничивать внутреннюю среду клетки, защищать ее от повреждений, регулировать поступление ионов и молекул, выводить продукты обмена и синтезируемые вещества (секреты), соединять клетки и ткани (за счет выростов и складок). Наружная мембрана обеспечивает проникновение в клетку крупных частиц путем фагоцитоза (см. разделы в «Зоологии» - «Простейшие», в «Анатомии» - «Кровь»). Аналогичным образом происходит поглощение клеткой капель жидкости - пиноцитоз (от греч. «пино» - пью).

Эндоплазматическая сеть (ЭПС) - это состоящая из мембран сложная система каналов и полостей, пронизывающих всю цитоплазму. ЭПС бывает двух типов - гранулированная (шероховатая) и гладкая. На мембранах гранулированной сети располагается множество мельчайших телец - рибосом; в гладкой сети их нет. Основная функция ЭПС - участие в синтезе, накоплении и транспортировке основных органических веществ, вырабатываемых клеткой. Белок синтезируется в гранулированной, а углеводы и жиры - в гладкой ЭПС.

Рибосомы - мелкие тельца, диаметром 15-20 нм, состоящие из двух частиц. В каждой клетке их сотни тысяч. Большинство рибосом располагаются на мембранах гранулированной ЭПС, а часть - в цитоплазме. В их состав входят белки и р-РНК. Основная функция рибосом - синтез белка.

Митохондрии - это мелкие тельца, размером 0,2-0,7 мкм. Их количество в клетке достигает нескольких тысяч. Они часто меняют форму, размеры и местоположение в цитоплазме, перемещаясь в наиболее активную их часть. Внешний покров митохондрии состоит из двух трехслойных мембран. Наружная мембрана гладкая, внутренняя - образует многочисленные выросты, на которых располагаются дыхательные ферменты. Внутренняя полость митохондрий заполнена жидкостью, в которой размещаются рибосомы, ДНК и РНК. Новые митохондрии образуются при делении старых. Основная функция митохондрий - синтез АТФ. В них синтезируется небольшое количество белков, ДНК и РНК.

Пластиды свойственны только клеткам растений. Различают три вида пластид - хлоропласты, хромопласты и лейкопласты. Они способны к взаимному переходу друг в друга. Размножаются пластиды путем деления.

Хлоропласты (60) имеют зеленый цвет, овальную форму. Размер их 4-6 мкм. С поверхности каждый хлоропласт ограничен двумя трехслойными мембранами - наружной и внутренней. Внутри он заполнен жидкостью, в которой располагаются несколько десятков особых, связанных между собой цилиндрических структур - гран, а также рибосомы, ДНК и РНК. Каждая грана состоит из нескольких десятков наложенных друг на друга плоских мешочков из мембран. На поперечном разрезе она имеет округлую форму, диаметр ее 1 мкм. В гранах сосредоточен весь хлорофилл, в них происходит процесс фотосинтеза. Образующиеся при этом углеводы вначале скапливаются в хлоропласте, затем поступают в цитоплазму, а из нее - в другие части растения.

Хромопласты определяют красную, оранжевую и желтую окраску цветов, плодов и осенних листьев. Они имеют форму многогранных кристаллов, расположенных в цитоплазме клетки.

Лейкопласты бесцветны. Они содержатся в неокрашенных частях растений (стеблях, клубнях, корнях), имеют округлую или палочковидную форму (размером 5-6 мкм). В них откладываются запасные вещества.

Клеточный центр обнаружен в клетках животных и низших растений. Он состоит из двух маленьких цилиндров - центриолей (диаметром около 1 мкм), расположенных перпендикулярно друг другу. Стенки их состоят из коротких трубочек, полость заполнена полужидким веществом. Основная их роль - образование веретена деления и равномерное распределение хромосом по дочерним клеткам.

Комплекс Гольджи получил название по имени итальянского ученого, впервые открывшего его в нервных клетках. Он имеет разнообразную форму и состоит из ограниченных мембранами полостей, отходящих от них трубочек и расположенных на их концах пузырьков. Основная функция - накопление и выведение органических веществ, синтезируемых в эндоплазматической сети, образование лизосом.

Лизосомы - округлые тельца диаметром около 1 мкм. С поверхности лизосома ограничена трехслойной мембраной, внутри ее находится комплекс ферментов, способных расщеплять углеводы, жиры и белки. В клетке имеется несколько десятков лизосом. Новые лизосомы образуются в комплексе Гольджи. Их основная функция - переваривание пищи, попавшей в клетку путем фагоцитоза, и удаление отмерших органоидов.

Органоиды движения - жгутики и реснички - представляют собой выросты клетки и имеют однотипное строение у животных и растений (общность их происхождения). Движение многоклеточных животных обеспечивается сокращениями мышц. Основной структурной единицей мышечной клетки являются миофибриллы - тонкие нити длиной более 1 см, диаметром 1 мкм, расположенные пучками вдоль мышечного волокна.

Клеточные включения - углеводы, жиры и белки - относятся к непостоянным компонентам клетки. Они периодически синтезируются, накапливаются в цитоплазме в качестве запасных веществ и используются в процессе жизнедеятельности организма.

Углеводы концентрируются в зернах крахмала (у растений) и гликогена (у животных). Их много в клетках печени, клубнях картофеля и других органах. Жиры накапливаются в виде капель в семенах растений, подкожной клетчатке, соединительной ткани и т. д. Белки откладываются в виде зерен в яйцеклетках животных, семенах растений и других органах.

Ядро - один из важнейших органоидов клетки. От цитоплазмы его отделяет ядерная оболочка, состоящая из двух трехслойных мембран, между которыми располагается узкая полоска из полужидкого вещества. Через поры ядерной оболочки осуществляется обмен веществ между ядром и цитоплазмой. Полость ядра заполнена ядерным соком. В нем находятся ядрышко (одно или несколько), хромосомы, ДНК, РНК, белки и углеводы. Ядрышко - округлое тельце размером от 1 до 10 мкм и более; в нем синтезируется РНК. Хромосомы видны только в делящихся клетках. В интерфазном (неделящемся) ядре они присутствуют в виде тонких длинных нитей хроматина (соединения ДНК с белком). В них заключена наследственная информация. Число и форма хромосом у каждого вида животных и растений строго определенные. Соматические клетки, из которых состоят все органы и ткани, содержат диплоидный (двойной) набор хромосом (2 n); половые клетки (гаметы) - гаплоидный (одинарный) набор хромосом (n). Диплоидный набор хромосом в ядре соматической клетки создается из парных (одинаковых), гомологичных хромосом . Хромосомы разных пар (негомологичные) отличаются друг от друга по форме, месту расположения центромеры и вторичных перетяжек.

Прокариоты - это организмы с мелкими, примитивно устроенными клетками, без четко выраженного ядра. К ним относятся сине-зеленые водоросли, бактерии, фаги и вирусы. Вирусы представляют собой молекулы ДНК или РНК, покрытые белковой оболочкой. Они так малы, что их можно разглядеть только в электронный микроскоп. У них отсутствуют цитоплазма, митохондрии и рибосомы, поэтому они не способны синтезировать белок и энергию, необходимые для их жизнедеятельности. Попав в живую клетку и используя чужие органические вещества и энергию, они нормально развиваются.

Эукариоты - организмы с более крупными типичными клетками, содержащие все основные органоиды: ядро, эндоплазматическую сеть, митохондрии, рибосомы, комплекс Гольджи, лизосомы и другие. К эукариотам относятся все остальные растительные и животные организмы. Их клетки имеют сходный тип строения, что убедительно доказывает единство их происхождения.

Органоиды постоянные и обязательные компоненты клеток; специализированные участки цитоплазмы клетки, имеющие определенную структуру и выполняющие определенные функции в клетке. Различают органоиды общего и специального назначения.

Органоиды общего назначения имеются в большинстве клеток (эндоплазматическая сеть, митохондрии, пластиды, комплекс Гольджи, лизосомы, вакуоли, клеточный центр, рибосомы). Органоиды специального назначения характерны только для специализированных клеток (миофибриллы, жгутики, реснички, сократительные и пищеварительные вакуоли). Органоиды (за исключением рибосом и клеточного центра) имеют мембранное строение.

Эндоплазматическая ретикулюм(ЭПР) это разветвленная система соединенных между собой полостей, трубочек и каналов, образованных элементарными мембранами и пронизывающая всю толщу клетки. Открыта в 1943 г. Портером. Особенно много каналов эндоплазматической сети в клетках с интенсивным обменом веществ. В среднем объем ЭПС составляет от 30% до 50% общего объема клетки. ЭПС лабильна. Форма внутренних лакун и кана

лов, их размер, расположение в клетке и количество изменяются в процессе жизнедеятельности. Развита сильнее в животных клетка. ЭПС морфологически и функционально связана с пограничным слоем цитоплазмы, ядерной оболочкой, рибосомами, комплексом Гольджи, вакуолями, образуя вместе с ними единую функционально-структурную систему для осуществления обмена веществ и энергии и передвижения веществ внутри клетки. Вблизи эндоплазматической сети накапливаются митохондрии и пластиды.

Выделяют две разновидности ЭПС: шероховатую и гладкую. На мембранах гладкой (агранулярной) ЭПС локализованы ферменты систем жирового и углеводного синтеза: здесь происходит синтез углеводов и почти всех клеточных липидов. Мембраны гладкой разновидности эндоплазматической сети преобладают в клетках сальных желез, печени (синтез гликогена), в клетках с большим содержанием питательных веществ (семена растений). На мембране шероховатой (гранулярной) ЭПС располагаются рибосомы, где осуществляется биосинтез белков. Часть синтезируемых ими белков включается в состав мембраны эндоплазматической сети, остальные поступают в просвет ее каналов, где преобразуются и транспортируются в комплекс Гольджи. Особенно много шероховатых мембран в клетках желез и нервных клетках.

Рис. Шероховатый и гладкий эндоплазматический ретикулум.

Рис. Транспорт веществ по системе ядро – эндоплазматический ретикулум (ЭПР) – комплекс Гольджи.

Функции эндоплазматической сети :

1) синтез белков (шероховатая ЭПС), углеводов и липидов (гладкая ЭПС);

2) транспорт веществ, как поступивших в клетку, так и вновь синтезируемых;

3) деление цитоплазмы на отсеки (компартменты), что обеспечивает пространственное разделение ферментных систем, необходимое для их последовательного вступления в биохимические реакции.

Митохондрии – присутствуют практически во всех типах клеток одно- и многоклеточных организмов (за исключением эритроцитов млекопитающих). Число их в разных клетках варьирует и зависит от уровня функциональной активности клетки. В клетке печени крысы их около 2500, а в мужской половой клетке некоторых моллюсков – 20 – 22. Их больше в грудной мышце летающих птиц, чем в грудной мышце нелетающих.

Митохондрии имеют форму сферических, овальных и цилиндрических телец. Размеры составляют 0,2 – 1,0 мкм и диаметре и до 5 - 7 мкм в длину.

Рис. Митохондрия.

Длина нитевидных форм достигает 15-20 мкм. Снаружи митохондрии ограничены гладкой наружной мембраной, сходной по составу с плазмалеммой. Внутренняя мембрана образует многочисленные выросты – кристы – и содержит многочисленные ферменты, АТФ-сомы (грибовидные тела), участвующие в процессах трансформации энергии питательных веществ в энергию АТФ. Количество крист зависит от функции клетки. В митохондриях мышц крист очень много, они занимают всю внутреннюю полость органоида. В митохондриях эмбриональных клеток кристы единичны. В растительных выросты внутренней мембраны чаще имеют форму трубочек. Полость митохондрии заполнена матриксом, в котором содержатся вода, минеральные соли, белки-ферменты, аминокислоты. Митохондрии имеют автономную белоксинтезирующую систему: кольцевую молекулу ДНК, различные виды РНК и более мелкие, чем в цитоплазме рибосомы.

Митохондрии тесно связаны мембранами эндоплазматической сети, каналы которой часто открываются прямо в митохондрии. При повышении нагрузки на орган и усилении синтетических процессов, требующих затраты энергии, контакты между ЭПС и митохондриями становятся особенно многочисленными. Число митохондрий может быстро увеличиваться путем деления. Способность митохондрий к размножению обусловлена присутствием в них молекулы ДНК, напоминающей кольцевую хромосому бактерий.

Функции митохондрий :

1) синтез универсального источника энергии – АТФ;

2) синтез стероидных гормонов;

3) биосинтез специфических белков.

Пластиды – органоиды мембранного строения, характерные только для растительных клеток. В них происходят процессы синтеза углеводов, белков и жиров. По содержанию пигментов их делят на три группы: хлоропласты, хромопласты и лейкопласты.

Хлоропласты имеют относительно постоянную эллиптическую или линзовидную форму. Размер по наибольшему диаметру составляет 4 – 10 мкм. Количество в клетке колеблется от нескольких единиц до нескольких десятков. Их размер, интенсивность окраски, количество и расположение в клетке зависят от условий освещения, вида и физиологического состояния растений.

Рис. Хлоропласт, строение.

Это белково-липоидные тела, состоящие на 35-55% из белка, 20-30% - липидов, 9% - хлорофилла, 4-5% каратиноидов, 2-4% нуклеиновых кислот. Количество углеводов варьирует; обнаружено некоторое количество минеральных веществ Хлорофилл – сложный эфир органической двухосновной кислоты – хлорофиллина и органических спиртов – метилового (СН 3 ОН) и фитола (С 20 Н 39 ОН). У высших растений в хлоропластах постоянно присутствуют хлорофилл а – имеет сине-зеленую окраску, и хлорофилл b – желто-зеленую; причем содержание хлорофилла, а в несколько раз больше.

Кроме хлорофилла в состав хлоропластов входят пигменты - каротин С 40 Н 56 и ксантофилл С 40 Н 56 О 2 и некоторые другие пигменты (каратиноиды). В зеленом листе желтые спутники хлорофилла маскируются более яркой зеленой окраской. Однако осенью, при листопаде, у большинства растений хлорофилл разрушается и тогда обнаруживается присутствие в листе каратиноида – лист становится желтым.

Хлоропласт одет двойной оболочкой, состоящей из наружной и внутренней мембран. Внутреннее содержимое – строма – имеет ламеллярное (пластинчатое) строение. В бесцветной строме выделяют граны – окрашенные в зеленые цвет тельца, 0,3 – 1,7 мкм. Они представляют собой совокупность тилакоидов – замкнутых телец в виде плоских пузырьков или дисков мембранного происхождения. Хлорофилл в виде мономолекулярного слоя располагается между белковым и липидным слоями в тесной связи с ними. Пространственное расположение молекул пигментов в мембранных структурах хлоропластов является весьма целесообразным и создает оптимальные условия для наиболее эффективного поглощения, передачи и использования лучистой энергии. Липиды образуют безводные диэлектрические слои мембран хлоропласта, необходимые для функционирования электронно-транспортной цепи. Роль звеньев цепи переноса электронов выполняют белки (цитохромы, пластохиноны, ферредоксин, пластоцианин) и отдельные химические элементы – железо, марганец и др. Количество гран в хлоропласте от 20 до 200. Между гранами, связывая их друг с другом, располагаются ламеллы стромы. Ламеллы гран и ламеллы стромы имеют мембранное строение.

Внутренне строение хлоропласта делает возможным пространственное разобщение многочисленных и разнообразных реакций, составляющих в своей совокупности содержание фотосинтеза.

Хлоропласты, как и митохондрии, содержат специфическую РНК и ДНК, а также более мелкие рибосомы и весь молекулярный арсенал, необходимый для биосинтеза белка. У этих органоидов имеется достаточное для обеспечения максимальной активности белоксинтезирующей системы количество и-РНК. Вместе с тем в них содержится и достаточно ДНК для кодирования определенных белков. Они размножаются делением, путем простой перетяжки.

Установлено, что хлоропласты могут изменять свою форму, размеры и положение в клетке, т. е. способны самостоятельно двигаться (таксис хлоропластов). В них обнаружено два типа сократительных белков, за счет которых, очевидно, и осуществляется активное движение этих органоидов в цитоплазме.

Хромопласты широко распространены в генеративных органах растений. Они окрашивают лепестки цветков (лютика, георгина, подсолнечника), плоды (томатов, рябины, шиповника) в желтый, оранжевый, красный цвета. В вегетативных органах хромопласты встречаются значительно реже.

Окраска хромопластов обусловлена присутствием каратиноидов – каротина, ксантофилла и ликопина, которые в пластидах находятся в различном состоянии: в виде кристаллов, липоидного раствора или в соединении с белками.

Хромопласты, по сравнению с хлоропластами, имеют более простое строение – в них отсутствует ламеллярная структура. Химический состав также отличен: пигменты – 20–50%, липиды до 50%, белки – около 20%, РНК – 2-3%. Это свидетельствует о меньшей физиологической активности хлоропластов.

Лейкопласты не содержат пигментов, они бесцветны. Эти самые мелкие пластиды имеют округлую, яйцевидную или палочковидную форму. В клетке они часто группируются вокруг ядра.

Внутренне структура, еще менее дифференцирована по сравнению с хлоропластами. В них осуществляется синтез крахмала, жиров, белков. В соответствии с этим выделяют три вида лейкопластов – амилопласты (крахмал), олеопласты (растительные масла) и протеопласты (белки).

Возникают лейкопласты из пропластид, с которыми они сходны по форме и строению, а отличаются лишь размерами.

Все пластиды генетически связаны друг с другом. Они образуются из пропластид – мельчайших бесцветных цитоплазматических образований, сходных по внешнему виду с митохондриями. Пропластиды находятся в спорах, яйцеклетках, в эмбриональных клетках точек роста. Непосредственно из пропластид образуются хлоропласты (на свету) и лейкопласты (в темноте), а из них развиваются хромопласты, являющиеся конечным продуктом в эволюции пластид в клетке.

Комплекс Гольджи – впервые был обнаружен в 1898 г. Итальянским ученым Гольджи в животных клетках. Это система внутренних полостей, цистерн (5-20), располагающихся сближено и параллельно друг другу, и крупных и мелких вакуолей. Все эти образования имеют мембранное строение и являются специализированными участками эндоплазматической сети. В животных клетках комплекс Гольджи развит лучше, чем в растительных; в последних он называется диктиосомы.

Рис. Строение комплекса Гольджи.

Попадающие в пластинчатый комплекс белки и липиды, подвергаются различным преобразованиям, накапливаются, сортируются, упаковываются в секреторные пузырьки и транспортируются по назначению: к различным структурам внутри клетки или за пределы клетки. Мембраны комплекса Гольджи также синтезируют полисахариды и образуют лизосомы. В клетках молочных желез комплекс Гольджи участвует в образовании молока, а в клетках печени – желчи.

Функции комплекса Гольджи :

1) концентрация, обезвоживание и уплотнение синтезированных в клетке белков, жиров, полисахаридов и веществ, поступивших извне;

2) сборка сложных комплексов органических веществ и подготовка их к выведению из клетки (целлюлоза и гемицеллюлоза у растений, гликопротеины и гликолипиды у животных);

3) синтез полисахаридов;

4) образование первичных лизосом.

Лизосомы - небольшие овальные тельца диаметром 0,2-2,0 мкм. Центральное положение занимает вакуоль, содержащая 40 (по разным данным 30-60) гидролитических ферментов, способных в кислой среде (рН 4,5-5) расщеплять белки, нуклеиновые кислоты, полисахариды, липиды и другие вещества.

Вокруг этой полости располагается строма, одетая снаружи элементарной мембраной. Расщепление веществ при помощи ферментов называется лизисом, поэтому органоид назван лизосомой. Образование лизосом происходит в комплексе Гольджи. Первичные лизосомы приближаются непосредственно к пиноцитозным или фагоцитозным вакуолям (эндосомам) и изливают свое содержимое в их полость, образуя вторичные лизосомы (фагосомы), внутри которых и происходит переваривание веществ. Продукты лизиса через мембрану лизосом поступают в цитоплазму и включаются в дальнейший обмен веществ. Вторичные лизосомы с остатками непереваренных веществ называются остаточными тельцами. Примером вторичных лизосом являются пищеварительные вакуоли простейших.

Функции лизосом :

1) внутриклеточное переваривание макромолекул пищи и чужеродных компонентов, поступающих в клетку при пино- и фагоцитозе, обеспечивая клетку дополнительным сырьем для биохимических и энергетических процессов;

2) при голодании лизосомы переваривают некоторые органоиды и на какое-то время пополняют запас питательных веществ;

3) разрушение временных органов эмбрионов и личинок (хвост и жабры у лягушки) в процессе постэмбрионального развития;

Рис. Образование лизосом

Вакуоли полости в цитоплазме растительных клеток и протист, заполненные жидкостью. Имеют форму пузырьков, тонких канальцев и другую. Вакуоли образуются из расширений эндоплазматической сети и пузырьков комплекса Гольджи как тончайшие полости, затем по мере роста клетки и накопления продуктов обмена объем их увеличивается, а количество сокращается. Развитая сформировавшаяся клетка имеет обычно одну большую вакуоль, занимающую центральное положение.

Вакуоли растительных клеток заполнены клеточным соком, который представляет собой водный раствор органических (яблочная, щавелевая, лимонная кислоты, сахара, инулин, аминокислоты, белки, дубильные вещества, алкалоиды, глюкозиды) и минеральных (нитраты, хлориды, фосфаты) веществ.

У протист встречаются пищеварительные вакуоли и сократительные.

Функции вакуолей :

1) хранилища запасных питательных веществ и вместилища выделений (у растений);

2) определяют и поддерживают осмотическое давление в клетках;

3) обеспечивают внутриклеточное пищеварение у протист.

Рис. Клеточный центр.

Клеточный центр обычно находится вблизи ядра и состоит из двух центриолей, расположенных перпендикулярно друг другу и окруженных лучистой сферой. Каждая центриоль представляет собой полое цилиндрическое тельце длиной 0,3-0,5 мкм и длиной 0,15 мкм, стенка которого образована 9 триплетами микротрубочек. Если центриоль лежит в основании реснички или жгутика, то ее называют базальным тельцем .

Перед делением центриоли расходятся к противоположным полюсам и возле каждой из них возникает дочерняя центриоль. От центриолей, расположенных на разных полюсах клетки, образуются микротрубочки, растущие навстречу друг другу. Они формируют митотическое веретено, способствующее равномерному распределению генетического материала между дочерними клетками, являются центром организации цитоскелета. Часть нитей веретена прикрепляется к хромосомам. В клетках высших растений клеточный центр центриолей не имеет.

Центриоли относятся к самовоспроизводящимся органоидам цитоплазмы. Они возникают в результате дупликации уже имеющихся. Это происходит при расхождении центриолей. Незрелая центриоль содержит 9 одиночных микротрубочек; по-видимому, каждая микротрубочка является матрицей при сборке триплетов, характерных для зрелой центриоли.

Центросома характерна для клеток животных, некоторых грибов, водорослей, мхов и папоротников.

Функции клеточного центра :

1) образование полюсов деления и формирование микротрубочек веретена деления.

Рибосомы - мелкие сферические органоиды, от 15 до 35 нм. Состоят из двух субъединиц большой (60S) и малой (40S). Содержат около 60% белка и 40% рибосомальной РНК. Молекулы рРНК образуют ее структурный каркас. Большинство белков специфически связано с определенными участками рРНК. Некоторые белки входят в состав рибосом только во время биосинтеза белка. Субъединицы рибосом образуются в ядрышках. и через поры в ядерной оболочке поступают в цитоплазму, где располагаются либо на мембране ЭПА, либо на наружной стороне ядерной оболочки, либо свободно в цитоплазме. Сначала на ядрышковой ДНК синтезируются рРНК, которые затем покрываются поступающими из цитоплазмы рибосомальными белками, расщепляются до нужных размеров и формируют субъединицы рибосом. Полностью сформированных рибосом в ядре нет. Объединение субъединиц в целую рибосому происходит в цитоплазме, как правило, во время биосинтеза белка. По сравнению с митохондриями, пластидами, клетками прокариот рибосомы в цитоплазме эукариотических клеток крупнее. Могут объединяться по 5-70 единиц в полисомы.

Функции рибосом :

1) участие в биосинтезе белка.

Рис. 287. Рибосома: 1 - малая субъединица; 2 - большая субъединица.

Реснички, жгутики выросты цитоплазмы, покрытые элементарной мембраной, под которой находится 20 микротрубочек, образующих 9 пар по периферии и две одиночные в центре. У основания ресничек и жгутиков расположены базальные тельца. Длина жгутиков достигает 100 мкм. Реснички – это короткие – 10-20 мкм – жгутики. Движение жгутиков винтовое, а ресничек – веслообразное. Благодаря ресничкам и жгутикам передвигаются бактерии, протисты, ресничные, перемещаются частицы или жидкости (реснички мерцательного эпителия дыхательных путей, яйцеводов), половые клетки (сперматозоиды).

Рис. Строение жгутиков и ресничек эукариот

Включения - временные компоненты цитоплазмы, то возникающие, то исчезающие. Как правило, они содержатся в клетках на определенных этапах жизненного цикла. Специфика включений зависит от специфики соответствующих клеток тканей и органов. Включения встречаются преимущественно в растительных клетках. Они могут возникать в гиалоплазме, различных органеллах, реже в клеточной стенке.

В функциональном отношении включения представляют собой либо временно выведенные из обмена веществ клетки соединения (запасные вещества - крахмальные зерна, липидные капли и отложения белков), либо конечные продукты обмена (кристаллы некоторых веществ).

Крахмальные зерна . Это наиболее распространенные включения растительных клеток. Крахмал запасается у растений исключительно в виде крахмальных зерен. Они образуются только в строме пластид живых клеток. В процессе фотосинтеза в зеленых листьях образуется ассимиляционный , или первичный крахмал. Ассимиляционный крахмал в листьях не накапливается и, быстро гидролизуясь до сахаров, оттекает в части растения, в которых происходит его накопление. Там он вновь превращается в крахмал, который называют вторичным. Вторичный крахмал образуется и непосредственно в клубнях, корневищах, семенах, то есть там, где он откладывается в запас. Тогда его называют запасным . Лейкопласты, накапливающие крахмал, называют амилопластами . Особенно богаты крахмалом семена, подземные побеги (клубни, луковицы, корневища), паренхима проводящих тканей корней и стеблей древесных растений.

Липидные капли . Встречаются практически во всех растительных клетках. Наиболее богаты ими семена и плоды. Жирные масла в виде липидных капель - вторая по значению (после крахмала) форма запасных питательных веществ. Семена некоторых растений (подсолнечник, хлопчатник и т.д.) могут накапливать до 40% масла от массы сухого вещества.

Липидные капли, как правило, накапливаются непосредственно в гиалоплазме. Они представляют собой сферические тела обычно субмикроскопического размера. Липидные капли могут накапливаться и в лейкопластах, которые называют элайопластами .

Белковые включения образуются в различных органеллах клетки в виде аморфных или кристаллических отложений разнообразной формы и строения. Наиболее часто кристаллы можно встретить в ядре - в нуклеоплазме, иногда в перинуклеарном пространстве, реже в гиалоплазме, строме пластид, в расширениях цистерн ЭПР, матриксе пероксисом и митохондриях. В вакуолях встречаются как кристаллические, так и аморфные белковые включения. В наибольшем количестве кристаллы белка встречаются в запасающих клетках сухих семян в виде так называемых алейроновых 3 зерен или белковых телец .

Запасные белки синтезируются рибосомами во время развития семени и откладываются в вакуоли. При созревании семян, сопровождающемся их обезвоживанием, белковые вакуоли высыхают, и белок кристаллизуется. В результате этого в зрелом сухом семени белковые вакуоли превращаются в белковые тельца (алейроновые зерна).



Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.