Управление через юсб. Управление устройствами через USB-порт компьютера - Железо - Компьютер и электроника к нему!!! Полезные функции программы USBDeview

Компьютер, некоторые детали, инструменты любой желающий сможет организовать простое управление бытовыми приборами с этого компьютера. Множество приборов используемых в быту имеют множество функций, например большинство современных телевизоров могут показывать некоторое количество разных каналов, у вентилятора м.б. некоторое количество разных режимов работы и т.д. Для того чтобы сделать такое сложное управление как например переключение каналов или режимов работы, помимо перечисленного выше понадобятся дополнительные знания, детали и инструменты но сделать простое включение и выключение под силу каждому кто это перечисленное имеет. Arduino связывается с компьютером через USB порт, передачу информации с компьютера на Arduino можно осуществлять через среду разработки для Arduino (называется Arduino IDE) которую можно скачать с страницы на официальном сайте Arduino . Существует множество разнообразных модулей для взаимодействия Arduino с внешним миром, например специальный модуль с блоком реле для коммутации нагрузок, при использовании таких модулей работа сильно упрощается, здесь же мы рассмотрим самостоятельное изготовление модуля с одним реле для включение/выключения бытовых приборов, при необходимости можно изготовить более одного такого модуля и использовать их с одним Arduino тем самым сделав возможным простое управление множеством бытовых приборов. Arduino (любое) имеет некоторое количество выводов общего назначения которые обозначаются, на плате, просто цифрами или цифрами с волнистым знаком "~". Подключив Arduino к компьютеру и записав в него (в Ардуино) специальный скетч (программа для Arduino) можно с этого компьютера через программу "Arduino IDE" управлять этими выводами делая на них высокое напряжение (примерно +5В (HIGH)) или низкое (примерно 0В (LOW)). Также на Arduino есть вывод "GND" (на плате так и обозначен). Если на одном из выводов общего назначения высокое напряжение то подключив что либо проводящее ток между этим выводом и выводом "GND" через то что подключено потечёт электрический ток и величина этого тока будет зависеть от сопротивления этого предмета и рассчитать её можно по закону Ома , т.е. чем меньше сопротивление том больше ток, но если сопротивление будет слишком низким то через Arduino потечёт слишком большой ток и оно перегорит. Максимальный ток который может выдать вывод общего назначения Arduino может быть разным в зависимости от используемого в нём микроконтроллера но обычно это 40мА = 0.04А - этого может быть недостаточно для того чтобы включить реле которое будет включать прибор (приборы) поэтому для усиления тока необходимо использовать дополнительный элемент например биполярный транзистор. Биполярный транзистор имеет три вывода: эмиттер, коллектор, база. Максимальный ток транзистора также ограничен как и у Ардуино и обычно он больше, например у популярного КТ315 максимальный ток равен 100мА = 0.1А. Биполярные транзисторы бывают двух типов n-p-n и p-n-p использовать можно оба типа но по разному и далее рассмотрим использование транзистора КТ315 тип которого n-p-n. Для того чтобы транзистор усилил ток из Ардуино необходимо соединить его базу с выводом Ардуино ЧЕРЕЗ РЕЗИСТОР сопротивлением 1кОм (на резисторе м.б. написано 1к), эмиттер этого транзистора соединить с "GND" Arduino и минусом питания или "GND" источника питания напряжение которого равно напряжению обмотки имеющегося реле (допустим 12В) один из выводов обмотки реле соединить с коллектором транзистора другой с плюсом источника питания (+12В допустим) и ещё одной не влияющей на усиление но ОЧЕНЬ важной деталью является диод который нужно соединить анодом с коллектором и катодом с плюсом источника питания (+12В). Если диод импортный то на скорее всего на его корпусе будет светлая полоса - она указывает на катод, другой вывод диода это анод. Оставшиеся выводы реле - это выводы его контактов, если их два и они не замкнуты то при подаче достаточного тока на обмотку реле эти контакты замкнуться, их нужно соединить последовательно с прибором и это последовательное соединение можно втыкать в розетку, тогда при замыкании контактов на прибор поступит 220В и он включиться. Описанное выше можно изобразить на картинке:

Рисунок 1 - Управление прибором с компьютера


Это нестандартная схема для лучшего понимания, обычно используют схемы такие:

Рисунок 2 - Управление прибором с компьютера


Хотя в этой схеме тоже присутствует нестандартное обозначение платы Ардуино. На рисунке обозначено Arduino UNO (можно заказать по этой ссылке http://ali.pub/1v22bh) но можно использовать и любое другое. Соединения можно делать например на макетной плате и проводами или пайкой. После того как всё правильно соединено и проверено можно подключить Ардуино по USB к компьютеру и загрузить в неё скетч:

Char pc_code=0;

Void setup()
{
pinMode(2, OUTPUT);
Serial.begin(9600);
}

Void loop()
{
if (Serial.available() > 0)
{
pc_code = Serial.read();
if(pc_code=="a")
{
digitalWrite(2, HIGH);
}
else if(pc_code=="b")
{
digitalWrite(2, LOW);
}
}
}

О том как правильно настроить Ардуино и загрузить в неё скетч уже описано на странице "Простое управление шаговым двигателем с компьютера через ардуино" . Далее для включения прибора необходимо на Ардуино отослать символ "a" для выключения символ "b". Для того чтобы отослать символ на ардуино можно, в среде Arduino IDE, войти по вкладке Инструменты-Монитор последовательного порта и в появившемся окне в верхнем текстовом поле вписывать символы и отсылать нажатием кнопки "отправить" символ придёт на ардуино и для данного случая если отослать символ "a" то прибор включиться, если "b" то соответственно выключиться. Если Ардуино не принимает символы то нужно в правом нижнем углу окна монитора последовательного порта установить такую же скорость какая прописана в скетче т.е. 9600 бод. Для того чтобы включать 2 прибора можно немного изменить скетч:

Char pc_code=0;

Void setup()
{
pinMode(2, OUTPUT);
pinMode(3, OUTPUT);
Serial.begin(9600);
}

Void loop()
{
if (Serial.available() > 0)
{
pc_code = Serial.read();
if(pc_code=="a")
{
digitalWrite(2, HIGH);
}
else if(pc_code=="b")
{
digitalWrite(2, LOW);
}
else if(pc_code=="c")
{
digitalWrite(3, HIGH);
}
else if(pc_code=="d")
{
digitalWrite(3, LOW);

Управление устройствами через USB-порт компьютера.

П. ВЫСОЧАНСКИЙ, г. Рыбница, Приднестровье, Молдавия
Устройство компьютерного управления различными приборами, схема которого показана на рис. 1, функционально подобно описанному в , но подключается к USB-порту компьютера, который (в отличие от СОМ-порта) сегодня есть в каждом из них. Единственная микросхема устройства - распространенный микроконтроллер ATmega8. Он необходим для организации связи по шине USB. Хотя в нем и отсутствует специализированный аппаратный модуль, эта функция выполняется программно.

Резистор R1, подключенный между положительным выводом источника питания и линией D-шины USB, переводит ее в низкоскоростной режим LS со скоростью обмена 1,5 Мбит/с, что и позволяет расшифровывать посыпки компьютера программным способом. Резисторы R4 и В5 устраняют переходные процессы, возникающие при обмене информацией, что увеличивает стабильность работы. Конденсатор С1 блокирует импульсные помехи в цепи питания, что также улучшает стабильность работы устройства. Диоды VD1 и VD2 служат для понижения напряжения питания микроконтроллера приблизительно до 3,6 В - это требуетсядля согласования уровнен с шиной USB.
Сигналы управления приборами формируются на выходах РВ0-РВ5 и РСО, РС1 микроконтроллера. Высокий логический уровень - напряжение около 3,4 В.
Напряжение низкого уровня близко к нулю. К выходам можно подключать приборы, потребляющие ток не более 10 мА (от каждого выхода). Если требуются большие значения тока или напряжения, то следует использовать узлы согласования, показанные в на рис. 5 и 6. Устройство собрано на макетной плате, печатная не разрабатывалась Применены резисторы МЛТ, конденсаторы С2 и СЗ - керамические высокочастотные, С1 - К50-35 или аналогичный импортный. Диоды кремниевые с падением напряжения на переходе около 0,7 В. Программа для микроконтроллера разработана в среде Bascom-AVR версии 1.12.0.0. Для работы с шиной USB использована библиотека swusb.LBX, которая выполняет программное декодирование сигналов USB в режиме реального времени. Полученный в результате компиляции код программы из файла с расширением HEX следует загрузить во FLASH-память микроконтроллера. Для этого был использован программатор совместно со встроенной в Bascom-AVR утилитой. Состояние разрядов конфигурации микроконтроллера должно соответствовать показанному на рис.2


При первом подключении устройства к компьютеру операционная система обнаружит новое USB HID совместимое устройство с именем "uniUSB" и установит необходимые драйверы. Через несколько секунд устройство настроено и готово к использованию. Для работы с ним была создана программа UniUSB. Она представлена в двух вариантах: для 32-разрядных (х86) и 64-разрядных (х64) операционных систем семейства Windows. Работа 32-разрядной версии проверена в операционных: Windows 98, Windows XP, Windows 7, а 64-разрядной - только в Windows XP х64. Программа UniUSB написана иа языке PureBasic (версия 4.31) с использованием библиотеки пользовательских функций HID Lib, поддерживающей работу с USB HID устройствами. Внешний вид окна программы показан на Рис.3


В одной папке с ее исполняемым файлом должен находиться файл, называющийся UniUSB_код.txt или UniCOM_код.txt. Последний вариант необходим для совместимости с программой UniCOM, предложенной в . В этом файле хранится сценарий управления внешними приборами. При запуске программы данные из файла загружаются в таблицу, расположенную в главном окне, а при завершении работы сохраняются в файле. Щелчок левой кнопкой мыши по ячейкам таблицы позволяет изменять их состояние: 1 - высокий логический уровень, 0 или пусто - низкий логический уровень. Для добавления или удаления столбца таблицы нужно по ней щелкнуть правой кнопкой мыши и в появившемся меню выбрать требуемое действие. При подключении устройства к USB-порту программа обнаружит его и активирует кнопку, расположенную в верхней части окна на панели инструментов. Нажатием на эту кнопку запускают процесс перебора столбцов таблицы и установки указанных в них состояний выходов. Для большей наглядности слева от таблицы подсвечиваются номера выходов, на которых в данный момент установлен высокий логический уровень. Скорость перебора (время в миллисекундах между переходами от столбца к столбцу) задают в поле "Скорость, мс". Учтите, операционная система Windows -- многозадачная! Это означает, что процессорное время делится между множеством иногда скрытых от пользователя процессов, которые выполняются по очереди с учетом установленных в системе приоритетов. По этому не стоит ожидать большой точности выдерживания интервалов времени менее 100 мс.
Для кратковременной остановки перебора столбцов используйте кнопку, Повторное нажатие на нее продолжит перебор с места остановки. Кнопка полностью прекращает перебор столбцов таблицы. Если в процессе обмена информацией между компьютером и устройством произойдет сбой либо устройство будет отключено от разъема USB компьютера, программа сообщит об ошибке, выведя в строке состояния соответствующее сообщение.

ЛИТЕРАТУРА

1. Носов Т. Управление приборами через СОМ-порт компьютера - Радио, 2007, № 11,с.61,62.
2. Рыжков A. US-программатор микроконтроллеров AVR и AT89S, совместимый с AVR910. - Радио, 2008, № 7, с. 28, 29.

По материалам журнала "Радио 2`2011"
Скачать прошивку микроконтроллера и программу для PC можно

Устройство компьютерного управления различными приборами, схема которого показана на рис. 1, подключается к USB-порту компьютера, который сегодня есть в каждом из них. Единственная микросхема устройства - распространенный микроконтроллер ATmega8 . Он необходим для организации связи по шине USB . Хотя в нем и отсутствует специализированный аппаратный модуль, эта функция выполняется программно.

Рисунок 1

Резистор R1, подключенный между положительным выводом источника питания и линией D-шины USB, переводит ее в низкоскоростной режим LS со скоростью обмена 1,5 Мбит/с, что и позволяет расшифровывать посылки компьютера программным способом. Резисторы R4 и R5 устраняют переходные процессы, возникающие при обмене информацией, что увеличивает стабильность работы. Конденсатор С1 блокирует импульсные помехи в цепи питания, что также улучшает стабильность работы устройства Диоды VD1 и VD2 служат для понижения напряжения питания микроконтроллера приблизительно до 3,6 В - это требуется для согласования уровней с шиной USB.

Сигналы управления приборами формируются на выходах РВ0-РВ5 и РС0, РС1 микроконтроллера. Высокий логический уровень - напряжение около 3,4 В. Напряжение низкого уровня близко к нулю. К выходам можно подключать приборы, потребляющие ток не более 10 мА (от каждого выхода). Если требуются большие значения тока или напряжения, то следует использовать узлы согласования.

Устройство собрано на макетной плате, печатная не разрабатывалась Применены резисторы МЛТ, конденсаторы С2 и СЗ - керамические высокочастотные, С1 - К50-35 или аналогичный импортный. Диоды кремниевые с падением напряжения на переходе около 0,7 В.

Программа для микроконтроллера разработана в среде Bascom-AVR версии 1.12.0.0. Для работы с шиной USB использована библиотека swusb.LBX , которая выполняет программное декодирование сигналов USB в режиме реального времени. Полученный в результате компиляции код программы из файла с расширением HEX следует загрузить во FLASH-память микроконтроллера. Состояние разрядов конфигурации микроконтроллера должно соответствовать показанному на рис. 2.

Рисунок 2

При первом подключении устройства к компьютеру операционная система обнаружит новое USB НID совместимое устройство с именем "uniUSB " и установит необходимые драйверы. Через несколько секунд устройство настроено и готово к использованию. Для работы с ним была создана программа UniUSB. Она представлена в двух вариантах: для 32-разрядных (х86) и 64-разрядных (х64) операционных систем семейства Windows. Работа 32-разрядной версии проверена в операционных системах Windows 98, Windows ХР, Windows 7, а 64-разрядной - только в Windows ХР х64.

Программа UniUSB написана на языке PureBasic (версия 4.31) с использованием библиотеки пользовательских функций HID_Lib , поддерживающей работу с USB HID устройствами. Внешний вид окна программы показан на рис. 3.

Рисунок 3

В одной папке с ее исполняемым файлом должен находиться файл, называющийся UniUSB_KOfl.txt . В этом файле хранится сценарий управления внешними приборами. При запуске программы данные из файла загружаются в таблицу, расположенную в главном окне, а при завершении работы сохраняются в файле. Щелчок левой кнопкой мыши по ячейкам таблицы позволяет изменять их состояние: 1 - высокий логический уровень, 0 или пусто - низкий логический уровень.

Для добавления или удаления столбца таблицы нужно по ней щелкнуть правой кнопкой мыши и в появившемся меню выбрать требуемое действие. При подключении устройства к USB-порту программа обнаружит его и активирует кнопку "Пуск" , расположенную в верхней части окна на панели инструментов. Нажатием на эту кнопку запускают процесс перебора столбцов таблицы и установки указанных в них состояний выходов. Для большей наглядности слева от таблицы подсвечиваются номера выходов, на которых в данный момент установлен высокий логический уровень. Скорость перебора (время в миллисекундах между переходами от столбца к столбцу) задают в поле "Скорость, мс".

Учтите, операционная система Windows - многозадачная! Это означает, что процессорное время делится между множеством иногда скрытых от пользователя процессов, которые выполняются по очереди с учетом установленных в системе приоритетов. Поэтому не стоит ожидать большой точности выдерживания интервалов времени менее 100 мс.

Для кратковременной остановки перебора столбцов используйте кнопку "Пауза". Повторное нажатие на нее продолжит перебор с места остановки. Кнопка "Стоп" полностью прекращает перебор столбцов таблицы. Если в процессе обмена информацией между компьютером и устройством произойдет сбой либо устройство будет отключено от разъема USB компьютера, программа сообщит об ошибке, выведя в строке состояния соответствующее сообщение.

13-01-2014

ATiny2313

Захаров Денис, Украина

Как известно, существует достаточное количество интерфейсов, с помощью которых микроконтроллер (МК) может общаться с внешними устройствами. Если необходимо связать МК с персональным компьютером или ноутбуком, то с уверенностью можно сказать, что лучше всего использовать интерфейс COM-порта RS-232.

Причина такого выбора очевидна - практически все контроллеры имеют аппаратные модули UART, с помощью которых можно передавать информацию при минимальном расходе ресурсов МК. Кроме того, существует множество хорошо зарекомендовавших себя программ, предназначенных для работы с COM-портом. Поскольку сигналы МК имеют уровни TTL, для согласования с интерфейсом RS-232 необходим преобразователь уровней. Часто его выполняют на основе доступной и популярной микросхемы MAX232 .

Рисунок 1.

Представленное устройство (Рисунок 1) предназначено для управления приборами с помощью любого ПК, имеющего порт USB. Современные компьютеры и ноутбуки имеют по несколько таких портов. С помощью этого комплекса можно производить управление светом, телевизором и другими приборами. Исполняющие устройства не обязательно должны находиться в непосредственной близости от ПК.

Прибор состоит из вполне доступных и распространенных элементов. Обе микросхемы - микроконтроллеры ATtiny2313 семейства . Первый контроллер подключен к USB-порту компьютера и выполняет функцию конвертора форматов USB-COM. Второй подключается к первому и все время сканирует команды, которые посылаются с ПК через терминальную программу Terminal v1.9b.

Подключенный к выводу 2 USB резистор R4 переводит устройство в низкоскоростной режим LS, позволяющий при обмене данными со скоростью 1.5 Мбит/с с помощью программы выпонять расшифровку посылок от ПК.

С помощью резисторов R2 и R3 происходит устранение переходных процессов. Конденсатор С5 блокирует импульсные помехи в цепи питания. Стабилитроны D1 и D2 необходимы для согласования логических уровней МК и USB входа ПК. Для безошибочной передачи данных между контроллерами частоты кварцевых резонаторов должны быть равны 12 и 4 МГц.
К выводам /RESET следует подключить подтягивающие резисторы, чтобы в дальнейшем избежать произвольного сброса МК из-за влияния помех и статических напряжений. В данной схеме все команды отображаются на светодиодах, подключенных к порту В. Чтобы управлять какими-либо устройствами, необходимо подключать выходы контроллера к реле (Рисунок 2).

Собрать устройство можно на макетной плате, хотя лучше, все же, на полноценной печатной плате. Элементы можно разместить, например, так, как показано на Рисунке 3.

Программа для микроконтроллера U1 разработана товарищем GetChiper в среде Bascom-AVR. Для работы с шиной USB использована библиотека swusb.LBX . С ее помощью выполняется программное декодирование USB протокола в режиме реального времени. Для работы устройства с ПК, нужно установить соответствующие драйверы, скопировав их на жесткий диск. При первом подключении устройство опознается и запросит драйвер. Далее нужно указать путь к папке с файлами, и все заработает.

Программа микроконтроллера U2 была написана мною в среде AVRStudio на языке ассемблера. Блок-схема алгоритма работы МК представлена на Рисунке 4. Аппаратный модуль UART следует настроить на прерывание по завершению приема данных. Сам МК не будет выполнять ни одной функции, пока не наступит прерывание. Для снижения энергопотребления можно воспользоваться режимом sleep, но в данной конструкции этого делать не понадобилось. Как только из терминала ПК последуют команды, МК мгновенно перейдет к их сканированию. На данный момент контроллер поддерживает следующую систему команд:

-on1, on2, on3, on4, on5, on6, on7, on8 - команды установки портов в «лог. 1»;
-off1, off2, off3, off4, off5, off6, off7, off8 - команды установки портов в «лог. 0»;
-ser - установить все порты в активное состояние «лог. 1»;
-clr - сбросить все порты в состояние «лог.0».

После окончания ввода каждой команды необходимо нажимать Enter. Таким образом МК сможет определить конец команды и приступить к ее сканированию. На каждую верную команду контроллер будет отвечать «ok». Если ввести неверные данные, то в терминальную строку вернется «error». Пример выполнения команды показан на Рисунке 5.

Версия прошивки 1.0. Выставлять фьюзы необходимо в соответствии с Рисунком 6. Разрабатывается следующая версия прошивки, где будет происходить самообучение МК и изменение систем команд в терминале.

Программное обеспечение МК, виртуальная модель Proteus и драйвер для ПК -
Протокол передачи данных между МК и ПК- скачать

  • ....вообще-то хотелось увидеть соопрежение м/у USB-портом одного компьютера с COM-портом второго...или LPT-порта третьего...
  • Спасибо! Опечатка исправлена:)
  • Зачем использовать 2 МК? Неужели у Attiny2313 мало flash? Или просто не хватает портов I/O? Тогда ладно, видно, что USB висит на INT0/INT1.
  • Сопротивление катушек маломощных реле в районе 100-200 Ом, не учитывая насыщенный транзистор (это же не пускатель, и не контактор). Так что 50-200 мА подходящий ключ не испугается. Материал очень интересен в плане привязки МК к USB без всяких интерфейсных микросхем и без присутствия в структуре МК аппаратного USB. Но учитывая цели и задачи первоисточника http://www.recursion.jp/avrcdc/cdc-232.html, из двух МК один выполняет всё же функции преобразователя USB-COM. И весьма дешёвого преобразователя, что безусловно радует.
  • Вот интересный гражданин попался с «дворянскими замашками», судя по нику. О каких экстремумах идёт речь? Вроде в материале нет даже упоминания о типе реле или транзисторов. И если реле запитывается от 5В USB то, безусловно, хотелось бы минимизировать потребление со стороны хоста на ПК. Этого можно добиться оптронами и дополнительным питанием реле со стороны нагрузки, что усложняет схему. Или ещё пару вариантов. Разве акцент в статье сделан на оптимизации? Автор добился своего и правильно делает, что не выкладывает конкретную плату. Для того, кто будет повторять, данного узла достаточно.
  • Да, статейка еще та... но стоит ли так опситраться? Я тоже хотел кое что прокомментировать сразу как ее прочел, и диод в том числе. Но анонимно тут нельзя. Вот зачем автору AVR-CDC? Я не заметил что где-то в схеме используются сигналы DTR, DTS, RTS, CTS. V-USB не хватило? Про два "кирпича" уже написали выше, - хватило бы и одного. А про диод уже исправлено, слава Будде! Диод нужен для защиты транзистора от импульса напряжения самоиндукции обмотки реле, в момент размыкания тока. Вот, кстати, вспомнил одну реализацию. Статья была в журнале Радио, но и в интернетах нашлась, кому интересно можете глянуть.
– Игорь (Администратор)

Сегодня, многие пользователи имеют далеко не одно USB устройство. На самом деле, подключение через USB стало практически универсальным способом. Большинство, наверно, уже даже забыло о существовании таких портов/разъемов, как LPT и COM. Например, достаточно большая часть периферийных устройств (принтер и т.д.) подключаются только через USB.

Программа менеджер USBDeview для управления USB устройствами

Если у вас много различных usb устройств, и вы ими активно пользуетесь, то, скорее всего, вы сталкивались с проблемами и ограниченностью стандартного менеджера usb устройств Windows. Для более эффективного управления подключениями, существует специальная утилита под названием USBDeview от NirSoft (ссылка на скачивание).

Примечание : Ограниченность стандартного менеджера устройств Windows вполне обоснована. Так как этой функциональностью пользуются как опытные, так и самые начинающие пользователи.

Примечание : На странице разработчика достаточно много информации. Сами ссылки на скачивание находятся в самом низу.

Утилита является портативной и может выполняться где угодно. Исполняемый файл весит порядке 170 КБ и поставляется как для 32-разрядных, так и для 64-разрядных версий Windows. Для такой небольшой программы, она имеет удивительно большое количество полезных функций.

Примечание : Полностью обо всех ее возможностях вы можете узнать на сайте разработчика. В данной статье речь пойдет лишь о некоторых наиболее используемых из них.

Как вы, наверное, заметили, на картинке представлена часть доступных функций. Подключение, отключение, удаление, открытие, проверка скорости, смена буквы и многое другое.

Полезные функции программы USBDeview

По различным причинам, реестр Windows хранит записи обо всех usb устройствах, когда либо подключенных к операционной системе. USBDeview покажет вам всю информацию обо всех устройствах, для которых сохранились записи в реестре. При необходимости, вы сможете подправить нужную информацию в реестре (утилита позволяет сразу открыть ключ реестра с информацией об usb устройстве).

Примечание : Хранение информации об устройствах используется, как минимум, по нескольким причинам. Во-первых, повторное подключение устройства будет происходить быстрее. Во-вторых, для устройств, требующих установки нестандартных драйверов, это жизненно необходимая функция. Иначе бы приходилось каждый раз устанавливать драйвера заново. В-третьих, устройствам могут присваиваться буквы диска. И чтобы ограничить риск возникновения проблем с одинаковыми буквами, имеет смысл присваивать каждому устройству уникальную букву.

Несмотря на стандарты, применяемые к определению скорости чтения и записи для каждой версии протокола обмена для USB, на каждом устройстве эта скорость может быть разной. USBDeview позволяет проводить простой тест, используя один большой файл для записи и чтения. Конечно, более корректным тестированием было бы копирование и чтение различных групп файлов с разными размерами, но, тем не менее, даже этот тест позволяет оценить примерную скорость.

Утилита так же позволяет сменить букву диска. Конечно, существуют и другие способы, но в данном случае вы сможете это сделать всего в пару щелчков мыши.

В целом, USBDeview представляет собой отличный менеджер USB устройств.



Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.